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SUMMARY: 

From the perspective of wind-resistant design, it is essential to accurately estimate of the peak design load acting on 

glazed panels. Existing time-length-velocity (TVL) method is severely dependent on the selection of the TVL 

factors, which should be determined according to the wind pressure characteristics of the building surface. Hence, an 

alternative method is necessary to be proposed to guarantee the precision and robustness in estimation of the peak 

pressure. This study applied the Convolutional Neural Network (CNN) to reconstruct the super-resolution pressure 

distributions on the building facade from low-resolution pressure measurements. The high-fidelity pressure database 

from a wind tunnel test is employed to train the CNN model. The constraint represented by the pressure gradient are 

embedded in the loss function of the CNN to enable the model to generate realistic pressure distribution 

characteristics. By spatially averaging of the super-resolution distributions, the peak space-averaged pressure on the 

glazed panels could be predicted. The study aims to generate the CNN model that could be applicable to the peak 

pressure predictions at various wind pressure modes. The present method is expected to have higher precision and 

efficiency in the prediction of peak wind pressure than traditional TVL method. 
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1. INTRODUCTION 

Glazed panels or building roofs are often destroyed by local extreme wind loadings, especially 

for the high-rise buildings. It is important to accurately evaluate the peak loadings on the 

cladding panels, considering the balance between the safety and economy.  

 

Two traditional ways exist. The first method is area averaging over a panel. However, due to the 

economic and technical limitations, sparse measurements were often installed in the previous 

field observations or wind-tunnel experiments, which resulted in the rough pressure estimations. 

For this reason, the second way is using time-filtering of pressure time series at a single pressure 

tap, which is called TVL approach. The moving-averaging window is determined by the TVL 

equation. An ambiguous parameter, K, is introduced in TVL equation. Many previous could not 

get the wide agreement of K values appropriate for corresponding wind pressure modes. 

 



Convolutional neural network (CNN), as a representative of deep learning algorithms, has a good 

performance of capturing the value distribution features of measurements. It has applied to 

super-resolution of turbulent flow with the coarse field as input and the fine field as output 

(Fukami et al., 2021). Clearly, the CNN model owns the ability to consider the nonlinear spatial 

distributions. 

 

Thus, the present study aims to examine the feasibility of CNN to reproduce high-resolution 

pressure field from given low-resolution measurements. After that, we could directly use the 

area-averaging method to estimate the peak pressure, which is thought to be more accurate. We 

are committed to generating the CNN model that could be applicable to the peak pressure 

predictions for different wind pressure modes. The gradient of the pressure is considered as 

constraint in the loss function of the CNN. We expect improvement of the accuracy and 

efficiency of extreme wind pressure estimation based on gradient-informed machine learning. 

 

 

2. METHODS 

For any machine learning, database is very crucial. The wind engineering group in Politecnico di 

Milano (PoliMi) conducted the very high spatial resolution pressure measurements in wind 

tunnel. The time series of pressure at various wind directions (α) were recorded at each 

measurement tap to build up a pressure database (Pomaranzi et al., 2022). The database gives us 

the chance to train the CNN model and evaluate it. 

 

We focused on the region adjacent to the top corner of the building facade, as depicted in Fig. 

1(a). The original experimental data is marked by the red stars. They are pooled to 3 time coarser 

field, indicated by the blue circles. The coarse fields are used for the input of CNN model.  

 

Fig. 1(b) shows CNN architecture. It is simplified from the GAN model proposed by (Wang et 

al., 2019). The “Generator” is applied to generate super-resolution (SR) pressure distributions 

that approach to true high-resolution (HR) pressure fields, with the low-resolution inputs (LR). 

The loss function is calculated between the HR and SR fields. It is a combination of two different 

loss terms, as expressed in Eq. (1), where LMSE is the pixel-based error of the reconstructed 

pressure fields, Lgradient represents the error calculated from the pressure gradient and α is the 

coefficient used to balance the gradient term. Cao et al., 2022 reconstructed the pressure fields 

based on the CNN with only LMSE and found that the distribution characteristics of local extreme 

pressure cannot be well reproduced. Therefore, in this study, we add Lgradient to expect the 

gradient-guided CNN model to deal with the non-uniform measurement distribution in the facade 

tile, and to better capture local extreme pressure variations to improve the performance of peak 

pressure prediction. 

 
𝐿 = 𝐿𝑀𝑆𝐸 +  𝛼𝐿𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (1) 

 

The original data is split into training and testing set. The first 60000 time steps in different wind 

direction are extracted as the training set. Ten wind directions are selected with a 15° resolution. 

The training samples are selected at equal intervals of 10, 60 and 600 at each direction, 

generating three subsets with sample sizes of 60000, 10000 and 1000. While the last 90000 time 

steps in the analyzed wind direction are extracted as the testing set.  
 



  
 

Figure 1. (a) High and low-resolution distributions of pressure taps in the database and (b) the CNN architecture. 

 

 

3. RESULTS  

After training, we can see the performance of SRCNN model. We first choose one wind 

directions prone to extreme suction events, i.e., at α = +10°.  

 

The root mean square error (RMSE) and accuracy R2 are computed to check the statistical 

tendency of pressure distribution with sample number in Fig. 2. The curves show the 

reconstruction performance of CNN without Lgradient informed. The higher sampling number 

improves the ability of instantaneous reconstruction. As the sample size is further increased 

beyond 10000, the reconstruction performances become convergent. The star signals denote the 

reconstruction errors and accuracies with CNN models constrained by Lgradient. They behave 

better than the models without the Lgradient constraint at a certain sample number.   

 

 
 

Figure 2. The errors and precisions of the instantaneous reconstructed pressure varied with the sample numbers. 

 

Once the instantaneous pressure field has been predicted, the area-averaging method could be 

used to evaluate the peak pressures on glazed panel. Two sizes of square panels, i.e., 1.5 m × 1.5 

m and 3 m × 3 m in full scale or 30 mm × 30 mm and 60 mm × 60 mm in model scale, are 

considered. The “true” area-averaged pressure coefficients are calculated from real 

measurements (Cp, AA). In order to assess the accuracy, the area-averaged peak pressure based on 

the low-resolution field (Cp, LR) and super-resolution CNN ones (Cp, SR). All these pressure 

coefficients are represented by Cp, Area in Eq. (2). Indeed, the spatial resolutions differ by 3 times.  

 

(a) (b) 
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We also compared the performance of CNN method with traditional TVL method. Pomaranzi et 

al., 2022 confirmed that taps at the center can predict representative pressure, and the TVL 

equation with K ≈ 3 provides a good estimate for the peak pressure using for α = +10° at Tile A. 

Thus, when using TVL method, the pressure taps near the panel centers are checked with K = 3.  

 

Table 1 shows mean relative errors between peaks of Cp, AA and the predicted values. When 

10000 sample number is used without the loss term of pressure gradient, the CNN predictions 

have much lower errors than the peak area-averaged pressure on the low-resolution field and the 

TVL estimations. When applying the same sample size with pressure gradient loss, the 

prediction errors decline further. This illustrates that the super-resolution method considered the 

gradient constraint predicts a more accurate area-averaged peak pressure. 

 
Table 1. Mean relative errors of peak negative values of Cp, LR, Cp, SR obtained from CNN without and with pressure 

gradient constraint and Cp, τ on individual pressure taps and with 10000 samples, in comparison with those of Cp, AA 

on the panels of two sizes when α=+10°. 

Panel Cp, LR Cp, τ Cp, SR (without Lgradient) Cp, SR (with Lgradient) 

1.5m×1.5m 17.01% 14.52% 7.88% 7.32% 
3m×3m 10.55% 19.41% 5.71% 5.59% 

 

 

4. CONCLUSIONS 

CNN model is well trained by pressure data from various wind directions in this study. Although 

no pressure gradient loss embeds, it exhibits a better accuracy in peak pressure predictions of 

cladding panels when extreme suctions prevail, compared with the direct integration from the 

sparse pressure data and the TVL estimations with the appropriate K value. The CNN model 

constrained by the pressure gradient loss represents the true area-averaged peaks more 

adequately than the model without gradient loss. We expect the current model has ideal 

generalization performance in predicting peak wind pressure for cases of different wind 

directions, i.e., pressure distribution modes. 
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